
Transcriptional enhancers are non- coding DNA ele-
ments that are typically 200–2,000 bp in length and drive 
gene expression patterns in space and time. Enhancers 
contain numerous binding sites for sequence- specific 
transcription factors (TFs), which upon binding to the 
enhancer recruit cofactors to activate transcription from 
a target core promoter. A typical metazoan gene con-
tains multiple cell type- specific enhancers spread across 
large genomic distances, which collectively produce a 
complex gene expression pattern (for general reviews on 
enhancers, see refs1–7). The classic textbook view is that, 
within a gene locus, different enhancers drive distinct 
spatiotemporal aspects of gene expression1,7. However, 
this model is an oversimplification because enhancers 
regulating the same gene often display overlapping 
or partially overlapping spatiotemporal activity8–12. 
Examples of such redundant enhancers were often over-
looked, until 2008, when Mike Levine and colleagues 
introduced the term ‘shadow enhancer’13. In that study, 
redundant enhancers were designated either as ‘pri-
mary’ (the enhancers closest to the core promoter) or 
as ‘shadow’ (the enhancers located at a greater distance 
from the core promoter)13. This distinction was later 
revised owing to a lack of functional differences between 
primary and shadow enhancers14,15. In this Review, we 
define ‘shadow enhancers’ as sets of enhancers that regu-
late a common target gene and drive expression patterns 
that partially or completely overlap in space and time. 
This definition has become increasingly accepted in the 
gene regulation community14–24. The degree of overlap 
required for enhancers to qualify as shadow enhancers 
depends on what is functionally meaningful in a given 

biological context. In the early Drosophila melanogaster 
embryo, characterized shadow enhancers typically over-
lap in more than 50% of their expression domains at a 
given time point (Table 1). However, in other contexts, 
such as the nematode nervous system, even an overlap 
in a single neuron cell can be biologically significant25.

The existence of shadow enhancers has raised fun-
damental questions about the purpose and evolutionary 
origins of this apparent redundancy. In development, 
multiple mechanisms of regulatory redundancy ensure 
accurate patterning. Examples include redundant genetic 
interactions and multiple binding sites for the same TF 
within an enhancer. Shadow enhancers are increasingly 
appreciated as another mechanism of redundancy that 
provides a safeguard against genetic and environmen-
tal perturbations. Seminal studies in D. melanogaster 
demonstrated that shadow enhancers improve the 
precision of gene expression and phenotypic robustness 
during animal development, especially under condi-
tions of physiological or genetic stress26–28. Later work in 
mammals confirmed that shadow enhancers similarly 
confer robustness to mammalian development18,29,30. 
Together, these studies suggest that shadow enhanc-
ers may be a common mechanism of developmental 
robustness in animals. Understanding the mechanism 
of shadow enhancer function will therefore illuminate 
how multi- enhancer architecture can determine the 
robustness or fragility of a developmental process to 
perturbation.

Recent advances in enhancer mapping and novel 
genetic and imaging tools for enhancer analysis have 
deepened our understanding of shadow enhancer 

Expression domains
The specific tissues or cell 
types where an enhancer 
drives expression of its  
target gene.

Phenotypic robustness
The ability of a system to 
reliably produce a wild- type 
phenotype in the presence  
of environmental (for example, 
temperature) or genetic  
(for example, decreased 
expression levels of an 
upstream transcription  
factor) stress.
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function and their crucial role in development and 
human disease. Chromatin profiling and 3D genome 
profiling by large consortia such as ENCODE, 
FANTOM, the Roadmap Epigenomics Consortium and 
the 4D Nucleome Project have produced genome- wide 
maps of putative enhancers across many cell types, tis-
sues and time points, both in mice and in humans31–36. 
Large- scale transgenic reporter assays have enabled 

characterization of in vivo activity for thousands of 
bona fide enhancers37–42, revealing an ever- growing 
number of putative shadow enhancers25,43. Efficient 
genome and epigenome editing of enhancers within 
their native genomic context has enabled analysis of 
enhancer requirements for organismal function44–47. 
Finally, quantitative live imaging methods have allowed 
the assessment of shadow enhancer functions in whole 

Table 1 | examples of shadow enhancers in different organisms

tissue or cell type Genes with reported shadow 
enhancers

Gene class Maximum distance 
between shadow 
enhancers (kb)

Refs

Plant

Anthers, pollen LAT Signalling ~3 50

Leaf cells rbcS-8B Signalling ~1 51

Worm

Nervous system cog-1, ric-4, ric-19, snb-1, unc-10, 
unc-11, unc-31, unc-64, unc-108

TF, pan- neuronal 
genes

~10 25,147

Fruit fly

Neurogenic ectoderm vnd, brk, sog, dan, SoxN TF, signalling ~40 10,13,43

Dorsal ectoderm tup TF ~20 43

A–P blastoderm slp1, wg, hb, Kr, kni, gt, oc (also known 
as otd), ems, hkb, fkh, Abd- B, prd

TF, signalling ~30 28,148,149

Mesoderm sna, miR-1, ade5, Traf1, rols, CG42788, 
CadN

Various ~10 10,16,27

Salivary glands sens TF ~2 43

Epidermis Ser, svb, y Various ~40 26,53,150

Wing imaginal disc brk Signalling ~10 56

Nervous system Ddc Signalling ~1 151

Eye Dve, dac TF, signalling ~15 55,87

Zebrafish

Brain krox20 TF ~100 152

Fin shh Signalling ~2 19

Neural tube shh Signalling ~2 57

Mouse

Brain, neural tube Otx2, Pomc, Shh, Arx, Ngn1 TF, signalling ~800 11,12,58, 

78,153,154

Neural crest Pax3 TF ~30 155

Eye Pax6, Cryaa TF, structural ~150 18,156

Blood α- Globin and β- globin genes, Igk, Igh Haemoglobin 
subunits, 
immune 
response

~25 68,91,114,130

Limb Gli3, Sox9, Shox2, Ihh, Hoxd, Hoxa, 
Tbx4

TF, signalling ~1,200 29,59,104,157,158

Tooth Shh Signalling ~100 30

Gut Cdx2 TF ~7 23

Human

Liver APOE Metabolism ~10 63

Blood β- Globin genes Haemoglobin 
subunits

~15 60,61

Eye ATOH7 TF ~20 22,159

Kidney REN Signalling ~6 62

Only non- adjacent enhancers are included. A–P, anterior–posterior; TF, transcription factor.
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embryos48,49. These advances have enabled scientists to 
address key questions in shadow enhancer biology: how 
common are shadow enhancers in the genomes of dif-
ferent animals? Is there a function of shadow enhancers 
beyond conferring robustness? How do shadow enhanc-
ers work together in the context of the 3D genome? 
What is the role of shadow enhancers in human disease?

In this Review, we discuss key points that have 
emerged from these technological advances. We review 
how these studies have provided insights into the prev-
alence of shadow enhancers in bilaterian genomes and 
their crucial role in ensuring normal development 
under conditions of stress. We illustrate how the action 
of multiple shadow enhancers on a single promoter can 
fine- tune gene expression. We also discuss a potential 
role of shadow enhancers in organizing ‘hubs’ of tran-
scriptional activity in the nucleus. We review the evi-
dence that shadow enhancers frequently regulate genes 
implicated in human disease and buffer gene expression 
against mutations in non- coding regulatory DNA. Lastly, 
we discuss theories for the origin of shadow enhancers 
and their unexpectedly high evolutionary constraint. We 
synthesize mechanistic studies of shadow enhancers in 
D. melanogaster with emerging genetic manipulations of 
enhancers in mice to provide a cohesive picture of the 
role of regulatory redundancy in animal systems.

Genomic prevalence of shadow enhancers
Enhancers with redundant activity have been described 
for more than 30 years, with examples from plants50,51, 
flies8–10,52–56, zebrafish57, mice11,12,58,59 and humans60–63 
(Table 1). These individual gene locus studies showed that 
shadow enhancers are found in a broad set of multicellu-
lar organisms, but within a single genome the prevalence 
of shadow enhancers was unknown. Since these studies 
were often focused on enhancers that control important 
developmental regulators, it was also not clear whether 
shadow enhancers are associated with other classes 
of genes. Substantial increases in the throughput of 
enhancer identification and characterization (reviewed 
in refs1,7,64) have allowed researchers to determine the 
prevalence of shadow enhancers genome- wide.

Genome- wide enhancer predictions based on chro-
matin features, such as chromatin accessibility, his-
tone modifications and TF binding, have suggested 
that shadow enhancers might be common in animal 
genomes. Using a combination of mesodermal TF chro-
matin immunoprecipitation data and computational 
models, Cannavo et al. generated an exhaustive catalogue 
of muscle development enhancers in D. melanogaster16. 
They found that nearly two thirds of examined mus-
cle developmental genes were controlled by shadow 
enhancers and that most of these genes had three or 
more predicted shadow enhancers16. A genome- wide 
analysis combining ENCODE transcriptomic and epig-
enomic data from multiple mouse tissues showed ample 
enhancer redundancy among developmentally regulated 
genes29,35. Whereas housekeeping genes are typically 
controlled by one enhancer, developmentally regulated 
genes can have ten or more shadow enhancers (Table 2).

In human cells, chromatin immunoprecipitation-  
based profiling of TFs, cofactors, chromatin regulators 

and enhancer- associated histone modifications revealed 
that hundreds of key cell identity genes are regulated 
by large clusters of putative transcriptional enhancers 
(super- enhancers or stretch enhancers), which could be 
clusters of shadow enhancers65–70. Many mammalian 
enhancers, including human enhancers, are actively 
transcribed, and the presence of enhancer- derived rNas 
(eRNAs) was suggested to be predictive of enhancer 
activity31,71,72. Profiling of eRNAs using cap analysis of 
gene expression (CAGE) across hundreds of human cell 
lines and tissues revealed that ~80% of 2,206 examined 
genes were associated with two or more co- transcribed 
enhancers31, suggesting that enhancer redundancy 
is common in the human genome. Computational 
approaches based on epigenomic data have also found 
widespread evidence for shadow enhancers in the human 
genome, particularly in association with developmental 
and disease- causing genes73.

Most chromatin and TF profiling methods are 
based on indirect measures of enhancer activity, which 
is why they have to be followed by functional testing. 
Large- scale transgenic enhancer- reporter screens have 
verified that bona fide redundant enhancers are com-
mon in the D. melanogaster and Caenorhabditis ele-
gans genomes. An analysis of nearly 8,000 enhancer 
fragments during D. melanogaster embryogenesis 
revealed that many developmentally regulated genes 
are controlled by two or more enhancers with overlap-
ping activities43 (Table 1). Single- neuron imaging data 
from hundreds of enhancer- reporter constructs in  
C. elegans demonstrated that shadow enhancers control 
nearly all 23 pan- neuronal genes studied25. Even within 
a single cell type, massively parallel reporter assays have 
shown that hundreds of genes in D. melanogaster cell 
lines are potentially controlled by two or more redun-
dant enhancers74. Taken together, these studies indicate 
that enhancers driving overlapping expression patterns 
are common in organisms from worms to insects to 
mammals and are preferentially, albeit not exclusively, 
associated with the control of developmental genes.

Shadow enhancers confer robustness
Several early studies in D. melanogaster demonstrated 
that shadow enhancers are required to drive normal 
development under conditions of stress, but they may 
be dispensable in ‘ideal’ conditions. For example, the TF 
Snail is required for normal gastrulation, and its expres-
sion in mesoderm is controlled by two shadow enhanc-
ers. Deletion of either of snail’s shadow enhancers, in the 
context of a bacterial artificial chromosome transgene, 
caused no apparent gastrulation defect27. However, indi-
vidual shadow enhancer deletion led to abnormal gas-
trulation under elevated temperatures or in a sensitized 
genetic background where the dosage of an upstream 
regulator, Dorsal, was reduced27. Similarly, a deletion of 
three of six epidermal shadow enhancers of shavenbaby 
(also known as ovo) had no phenotype under normal 
conditions but caused a decrease of trichome numbers 
under temperature or genetic stress conditions26.

Advances in genome editing have enabled the effi-
cient introduction of multiple mutations in mice75–77, 
enabling experiments to test whether shadow enhancers 

Evolutionary constraint
factors that serve to limit the 
divergence of a particular 
phenotype; conserved DNa 
sequences are interpreted  
as evidence of evolutionary 
constraint.

Super- enhancers or stretch 
enhancers
Clusters of enhancers that  
are strongly occupied  
by transcription factors, 
co- activators or modified 
histones (as measured by 
chromatin immunoprecipita-
tion followed by sequencing) 
and that control key cell 
identity genes.

Enhancer- derived RNAs
(erNas). short, non- coding 
rNas that are transcribed  
from the DNa of enhancer 
sequences and whose 
transcription correlates  
with enhancer activity.
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similarly provide developmental robustness in verte-
brates. Whereas single shadow enhancer deletions in  
mice typically show either mild or no observable pheno-
types, double enhancer deletions show severe phenotypes,  
often comparable to complete gene loss of function in 
relevant tissues18,29,30,68,78. Together, these observations 
indicate that both enhancers regulate the gene and at 
least one shadow enhancer is required for normal devel-
opment in ideal conditions (fig. 1). Despite driving simi-
lar expression patterns, the individual shadow enhancers 
are not strictly redundant. In a sensitized genetic back-
ground with a reduced dosage of the target gene, single 
enhancer deletions show abnormal phenotypes, indi-
cating that shadow enhancers can confer robustness 
to genetic perturbations (fig. 1). This pattern has been 
demonstrated for Pax6, a gene required for early eye lens 
morphogenesis18, Shh in developing teeth30 and several 
limb development loci29.

Taken together, both fruit fly and mouse studies 
emphasize that, while ostensibly redundant in the 
expression patterns they drive, the necessity of shadow 
enhancers is revealed when enhancer- deficient organ-
isms are placed in stressful conditions. How shadow 
enhancers provide this robustness remains an area of 
open investigation, and more than one mechanism may 
be at play. One potential scenario is that each enhancer 
alone can drive sufficient levels of gene expression for 
normal development, similar to the haplosufficiency of 
many developmental genes. By having multiple enhanc-
ers, the probability that at least one is active increases, 
increasing the chance for normal development14,24.  
A second potential mechanism was suggested by the 
observation that a pair of D. melanogaster shadow 
enhancers controlling the gene Kruppel are regulated by 
different combinations of TFs17. By responding to differ-
ent sets of TFs, but converging on a single output, shadow 
enhancers could provide a mechanism to buffer gene 
expression against not only mutations in their sequences 

but, more importantly, perturbations in one of their 
upstream TFs (fig. 2). Experimental measurements show 
that Kruppel’s independently controlled shadow enhanc-
ers drive lower expression noise than single or duplicated 
enhancer configurations, suggesting that simple enhancer 
duplications may not be sufficient to provide pheno-
typic robustness79. Independent regulation of shadow 
enhancers may be a widespread mechanism to confer 
robustness, as many mesodermal shadow enhancers  
are bound by different combinations of upstream TFs16.

Modes of shadow enhancer interactions
The interactions between shadow enhancers can 
fine- tune the expression pattern of their target gene. 
Within an individual cell, shadow enhancers can inter-
act in one of four ways: additively, superadditively 
(driving more expression than the sum of the indi-
vidual enhancer activities), subadditively (driving less 
expression than the sum of the individual enhancer 
activities) or repressively (fig. 3). The classic view of 
enhancers is implicitly additive, as each enhancer func-
tions independently to build up a gene’s total expression 
pattern80. Several studies in the fruit fly embryo used 
live mRNA tracking of reporter constructs to measure 
shadow enhancer interaction. Shadow enhancers can 
act additively, with a pair of shadow enhancers driving 
expression roughly equal to the sum of the individual 
enhancers’ expression output. For example, such addi-
tive behaviour is seen for the shadow enhancers con-
trolling the genes knirps and hunchback81. However, 
this behaviour can change depending on the cell type 
or time point because of the varying levels and identi-
ties of TFs bound to each enhancer. For example, the 
knirps shadow enhancers act additively at some time 
points and superadditively at others, indicating the 
presence of synergistic interactions between shadow 
enhancers81. The shadow enhancers controlling the 
mouse Pomc gene also show superadditivity at some 

Table 2 | examples where genes are controlled by more than two shadow enhancers

tissue or cell 
type

enhancer 
identification 
method

Method of assigning 
enhancers to genes

Genes number 
of shadow 
enhancers 
per gene

Ref.

Fruit fly

S2 cells 
(macrophage- like)

MPRA Genomic proximity Various  
(203 genes)

≥5 74

Embryonic 
mesoderm

Mesoderm TF ChIP Genomic proximity and 
correlation with gene expression

Various  
(150 genes)

≥3 16

Mouse

Embryonic limb H3K27 acetylation 
ChIP

Genomic proximity within a 
TAD and correlation with gene 
expression

Limb TF genes  
(41 genes)

Median of 8 29

Embryonic heart H3K27 acetylation 
ChIP

Genomic proximity within a 
TAD and correlation with gene 
expression

Heart TF genes  
(27 genes)

Median of 10 29

Embryonic 
forebrain

H3K27 acetylation 
ChIP

Genomic proximity within a 
TAD and correlation with gene 
expression

Forebrain TF 
genes (21 genes)

Median of 4 29

ChIP, chromatin immunoprecipitation; H3K27 , histone H3 Lys27; MPRA, massively parallel reporter assay, TAD, topologically 
associating domain; TF, transcription factor.

Haplosufficiency
a property of an allele whereby 
a single copy of that allele in a 
diploid organism is sufficient to 
drive a wild- type phenotype.

Expression noise
Variability in gene expression 
across either time or space, 
owing to the stochastic nature 
of the molecular interactions 
underlying gene expression.
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time points and additivity at others82. In the case of 
the D. melanogaster hunchback gene, the behaviour 
depends on the concentration of its primary activating 
TF, Bicoid (Bcd). In cells where Bcd concentration is 
low, the two enhancers combine additively, but in cells 
where Bcd concentration is high, the enhancers com-
bine subadditively81. Such subadditive behaviour could 

indicate the presence of competition between shadow 
enhancers for promoter occupancy. Subadditivity has 
also been observed in the case of strong enhancers in 
the Kruppel locus83.

In addition to the interactions described above, one 
shadow enhancer can partially or completely repress 
the other, decreasing or shutting off expression entirely. 
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Fig. 1 | shadow enhancers confer phenotypic robustness in mammals. In mice, many individual shadow enhancer 
deletions yield no observable phenotypes. However, either the deletion of individual shadow enhancers in a sensitized 
background or the deletion of pairs of shadow enhancers leads to observable phenotypes. Schematics of perturbations 
(left) and resulting phenotypes in mice (right) are shown for two gene loci: Gli3 (ref.29) and Pax6 (refs18,160). GLI3 is critical 
for proper limb development, and knockout of the encoding gene causes the formation of extra digits (among other 
phenotypes)161. Skeletal phenotypes in the absence of individual Gli3 shadow enhancers, pairs of shadow enhancers or  
an individual shadow enhancer in a sensitized background are shown (centre). Red asterisks indicate the presence of  
extra digits. Pax6- deficient mice have arrested eye development and no lens formation162,163. A schematic diagram of an 
eye section showing a developing lens in the absence of individual Pax6 shadow enhancers, pairs of shadow enhancers  
or an individual shadow enhancer in a sensitized background is shown (centre right). A schematic of gene dosage in the 
mutants is shown on the right. EnhA, enhancer A; EnhB, enhancer B. Adapted from ref.29, Springer Nature Limited.
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In D. melanogaster embryonic cells at the boundary of 
the knirps and Kruppel expression domains, shadow 
enhancers can repress each other’s activity, yielding 
sharper expression patterns than either enhancer alone84. 
Examples from the short gastrulation, snail and defective 
proventriculus loci show some shadow enhancer dele-
tions can lead to higher expression levels, suggesting 
that one shadow enhancer represses the other81,85–87. 
The mechanisms that explain this repression are still 
unclear and could include quenching, interference of 
enhancer–promoter looping, or the spread of repressive 
chromatin marks.

On the tissue or organismal level, shadow enhanc-
ers can interact in nuanced ways to fine- tune both the 
levels and the patterns of gene expression. The way that 
multiple shadow enhancers interact can vary from cell 
to cell, depending on the trans- regulatory environ-
ment. Multiple potential mechanisms may explain the 
variety of behaviours observed. For example, subaddi-
tive behaviours between two strong shadow enhancers 
might occur because their target promoter has reached 
its maximum expression rate or because the enhancers 
are competing with each other for promoter access3,81,83. 
Superadditive behaviours might arise if there is synergy 
between the TFs bound at each shadow enhancer3,88. 
Additional experiments that manipulate the number of 
shadow enhancers in a locus or their TF- binding con-
tent, combined with experiments that probe the molec-
ular details of shadow enhancer function (described 
later), may further illuminate the mechanisms at play.

Shadow enhancers and nuclear organization
The experiments described in the previous section  
measured the gene expression driven by shadow enhanc-
ers across the entire organism. How do shadow enhancers  
operate on a molecular level? Enhancers can regulate 
their target core promoters over long distances, some-
times up to several megabases, a process mediated by 
TFs, co- activators and RNA polymerase II. Many studies 
observe the establishment of enhancer–promoter inter-
actions coordinately with gene transcription. Various 
mechanisms and models of enhancer–promoter com-
munication have been proposed, including tracking, 
linking, looping and combinations thereof (for gen-
eral reviews on enhancer–promoter interactions, see 
refs2,4,89,90). The prevalence of shadow enhancers raises 
an intriguing question about how multiple enhancers 
interact with a single core promoter. Do shadow enhanc-
ers loop to the target promoter in a coordinated fashion, 
or is it a dynamic process with multiple enhancers com-
peting for the same promoter (fig. 4a)? Distinguishing 
between these possibilities may help to illuminate how 
multiple shadow enhancers combine their activities to 
specify patterns and levels of gene expression.

Experiments based on chromosome conformation 
capture provide indirect support for simultaneous 
promoter activation, as individual shadow enhancers 
often form contacts between each other and the target 
gene in the same cell68,91–94. These capture experiments 
were performed in populations of fixed cells and do not 
reflect the dynamics of enhancer–promoter interactions 
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Fig. 2 | independent tF inputs to shadow enhancers lead to more robust transcriptional output. Shared and separated 
transcription factor (TF) inputs to the individual shadow enhancers can have different effects on gene expression noise.  
In the case of separated inputs, shadow enhancers regulating the same target gene do not share any of the same TF 
regulators (top left), while in the case of shared inputs, shadow enhancers are regulated by the same set of TFs (top right). 
Below these two different models, we show the corresponding target gene expression dynamics in single cells as a 
function of time. Lower expression noise is seen with shadow enhancers with separated TF inputs than with shadow 
enhancers using shared TF inputs. See ref.79 for more details.

Quenching
a form of repression whereby 
the binding of repressive 
transcription factors within an 
enhancer sequence blocks the 
binding of activating 
transcription factors.
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and transcription from the target promoter. Live 
imaging of transcription in D. melanogaster embryos 
suggests that a single enhancer can simultaneously 
activate two different promoters, even those located 
on different chromosomes, leading to synchronized 
transcription bursts95,96. Together, these studies suggest 
that enhancer–promoter loops can include more than 
two DNA elements. Therefore, it seems plausible that 
several shadow enhancers could simultaneously coordi-
nate the expression of a single target promoter (fig. 4a).  
A direct demonstration of such coordinated expression 
is challenging as it requires simultaneous labelling of 
several shadow enhancers and transcription from a tar-
get promoter. With the development of new live imaging 
tools, it may soon be possible to visualize how shadow 
enhancers activate target promoters in live nuclei97–100.

The concept of dynamic ‘transcriptional hubs’ (or the  
related concepts of ‘nuclear microenvironments’ or less  
dynamic ‘transcriptional condensates’) challenges the 
simple enhancer–promoter looping model and pro-
vides a plausible model for promoter regulation by 
multiple shadow enhancers90,101–106. These large hubs 

(more than 300 nm) are formed by TFs, components 
of the core transcriptional machinery102,103 and RNA 
polymerase II (refs105,107) and may explain why some 
enhancers activate promoters even in the absence of 
close enhancer–promoter proximity108,109. The hub 
model suggests that shadow enhancers and their target 
promoter can simultaneously participate in the same 
microenvironment, forming a multi- enhancer hub. The 
observation of transcriptional co- activator condensates 
on super- enhancer- associated genes provides support 
for this model65,102,103. Recent work on the D. melano-
gaster shavenbaby locus showed that deleting one of the 
shadow enhancers results in decreased local density of 
the key activating TFs, suggesting that shadow enhanc-
ers are critical for maintaining high concentrations of 
TFs within the transcriptional hub110 (fig. 4b). Through 
the formation of multi- enhancer transcriptional 
hubs with high concentrations of TFs, transcriptional 
co- activators and RNA polymerase II, shadow enhancers 
may increase phenotypic resilience to stress by buffer-
ing gene expression against environmental and genetic 
perturbations.

Ex
pr

es
si

on
 le

ve
l A + B

(predicted)

Enhancer B

Reporter gene

Enhancer A + enhancer B

A + B
(predicted)

A + B
(predicted)

Enhancer A

A B A + B
(observed)

A B A + B
(observed)

A B A + B
(observed)

A B A + B
(observed)

A B A + B
(observed)

Subadditive Additive Superadditive Partially repressive Fully repressive
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than that produced by either individual enhancer.

Transcription bursts
Periods of rapid transcription 
interspersed with periods  
of transcriptional silence.

Transcriptional hubs
Three- dimensional nuclear 
compartments (more than 
300 nm) formed around 
actively transcribed genes  
with a high local concentration 
of transcription factors, 
co- activators, rNa polymerase 
ii and other components of the 
core transcriptional machinery.
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Shadow enhancers and human disease
Many human genetic disorders are caused by muta-
tions in developmental genes. A strong association of 
shadow enhancers with developmental genes suggests 

that enhancer redundancy provides an important safe-
guard against deactivating non- coding mutations in 
cis- regulatory regions of disease- causing genes (fig. 5). 
Indeed, evidence from human genetics studies and 
experiments in mice suggests that disease- associated 
genes contain shadow enhancers that likely buffer 
gene expression against the effect of loss- of- function 
non- coding mutations.

A recent study used chromatin profiling data across 
127 human tissues from the Roadmap Epigenomics 
Consortium to calculate an ‘enhancer- domain score’ 
for each human gene33,73. Enhancer- domain scores indi-
cate the amount of redundant regulatory DNA for each 
gene, based on the total number of predicted enhancers 
and the redundancy of TF motifs within them. High 
enhancer- domain scores are predictive of gene patho-
genicity, suggesting that the number of shadow enhanc-
ers is closely related to the gene’s importance in human 
disease73. This analysis is consistent with previous obser-
vations in fruit flies and mice, where important develop-
mental genes tend to have larger regulatory domains111 
and contain more enhancers per tissue29.

The strong association between shadow enhanc-
ers and developmental and disease- associated genes 
explains why many targeted deletions of enhancers of 
these genes cause fairly mild phenotypes or no observ-
able phenotypes in mice12,112–116. Moreover, deletions of 
ultraconserved enhancers, which retain almost perfect 
sequence conservation across vertebrates and are located 
next to important developmental genes, have also led to 
viable mice with subtle phenotypes78,117,118. With the avail-
ability of highly efficient CRISPR–Cas9 genome editing, 
the number of enhancer- knockout mice that lack observ-
able phenotypes has grown18,29,68,78,119. These studies  
further suggest that a significant fraction of loss-of- 
function mutations in human shadow enhancers will 
cause relatively subtle phenotypes in patients.

Shadow enhancer buffering predicts that loss- of-  
function genetic variants in human shadow enhancers 
would have less severe effects on gene expression and 
phenotypes than variants in non- redundant enhanc-
ers. Indeed, genes with redundant enhancer domains 
are depleted of common and rare non- coding variants 
associated with gene expression changes73. This pat-
tern indicates that genes with shadow enhancers are 
more resilient against naturally occurring non- coding 
mutations in the human population.

It remains to be seen whether shadow enhanc-
ers also provide protection against gain- of- function 
mutations in enhancers that cause misexpression of 
disease- associated genes. Studies in D. melanogaster 
showed that one shadow enhancer can repress another 
shadow enhancer in a dominant fashion84, suggesting 
that enhancer mutations causing gene misexpression 
could, in principle, be buffered by repression from 
another shadow enhancer. By contrast, both rare and 
common gain- of- function enhancer variants are asso-
ciated with congenital malformations120, heart disease121, 
intellectual disabilities122 and cancer123–125, potentially 
through misexpression or upregulation of impor-
tant developmental genes. In these examples, it is not 
always clear whether an additional shadow enhancer 
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was also present. Systematic mutagenesis of human 
enhancers using massively parallel reporter assays fol-
lowed by in vivo validation in mice will help to identify 
how frequently such gain- of- function mutations affect 
enhancers40,126–129.

Evolution of shadow enhancers
Evolutionary origin of shadow enhancers. Despite their 
importance, the evolutionary origins of most shadow 
enhancers are unclear. Like non- redundant enhanc-
ers (reviewed in ref.3), shadow enhancers may arise 
by one of several mechanisms: de novo from existing 
non- coding DNA, duplication of existing enhancers, 
or co- option of transposable elements or unrelated 
enhancers. Another potential mechanism is splitting 
an enhancer with redundancy across its length into two 
parts through the insertion of non- functional DNA 
(fig. 6). The redundancy of shadow enhancers suggests 
that they may emerge as a result of duplication events, an 
idea proposed for some Drosophila shadow enhancers13. 
However, there are only few documented examples of 
such origins63,130, and many shadow enhancers seem 

to have little sequence similarity79,131. Some shadow 
enhancers can arise from transposon co- option events. For 
example, MER41 endogenous retroviruses (ERVs) have 
been co- opted to redundantly regulate genes involved 
in the interferon response132. Mammalian- apparent long 
terminal repeat (LTR) and short interspersed element 
(SINE) retrotransposons were independently co- opted 
to redundantly regulate the brain expression of the 
Pomc gene, which is important for the control of food 
intake133 (Table 1). A recent study used enhancer pre-
dictions based on eRNA profiling across hundreds of 
human and mouse cell lines to estimate that 31% of all 
redundant enhancer pairs in humans and 17% of those 
in mice have evolved by transposon co- option131. For 
most transposon- derived redundant enhancer pairs, 
both enhancers have evolved through independent 
transposons co- option events, suggesting that duplica-
tion may not be a dominant route of shadow enhancer 
acquisition. Most shadow enhancers have only partially 
overlapping activity patterns (Table 1), suggesting that 
one of the main mechanisms of shadow enhancer birth 
could be through co- option of enhancers with ini-
tially non- overlapping activities. Selection may favour 
the recruitment of shadow enhancers to genes whose 
robust expression is required for a newly emerging key 
developmental process (for example, pectoral fins in 
jawed fish19).

Evolutionary conservation of shadow enhancers. Given 
the redundancy of shadow enhancers, it was initially 
hypothesized that they would be subject to relaxed evo-
lutionary constraint, allowing them to evolve novel reg-
ulatory functions13. If true, this hypothesis would predict 
a greater rate of mutations in shadow enhancers than in 
non- redundant enhancers. In a large group of D. melano-
gaster mesoderm- specific enhancers, shadow enhancers 
have higher sequence conservation than non- redundant 
enhancers, and there is no evidence of relaxed constraint 
on shadow enhancers16. Among ultraconserved enhanc-
ers, many have activity that is redundant with another 
ultraconserved enhancer in the locus29,78,117,118. This 
observation is again in contrast to the prediction that 
shadow enhancers are subject to weak evolutionary con-
straint. Growing evidence also suggests that evolution 
acts on groups of shadow enhancers as regulatory units, 
instead of on each enhancer individually. Similarly to 
the stabilizing selection that maintains a single enhanc-
er’s function134, mutations that cause a reduction in the 
activity of one shadow enhancer could be compensated 
by other mutations that increase the activity of another 
shadow enhancer, and vice versa. Indeed, stabilizing 
selection has been shown to act on shadow enhancers 
to maintain conserved expression levels across different 
species17,135,136.

A full understanding of the evolutionary patterns of 
shadow enhancers remains to emerge, but the data col-
lected so far suggest that shadow enhancers may not be 
an evolutionarily special and distinct class of enhancers 
per se. The conservation of shadow enhancers and the 
growing evidence that individual shadow enhancers can 
have distinct functions suggest that shadow enhancers 
can be fine- tuned for multiple purposes79,84,86.
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Fig. 5 | shadow enhancers buffer gene expression against non-coding mutations in 
disease-causing genes. a | Many genetic disorders are caused by loss- of- function (LoF) 
mutations in coding regions of disease- causing genes. If the gene is controlled by a single 
enhancer, a LoF mutation in the enhancer will mimic the loss of gene function in the 
tissue and the time point of enhancer activity. b | If a disease- causing gene is controlled 
by shadow enhancers, mutations in non- coding regions that deactivate one of the 
shadow enhancers will be buffered by another shadow enhancer.

Ultraconserved enhancers
enhancers overlapping 
‘ultraconserved’ sequences, 
which are stretches of DNa 
that share perfect sequence 
conservation between mouse, 
rat and human.

Transposon co- option
The process by which a 
transposon changes its 
function (for example, becomes 
a new gene or enhancer) 
through the introduction  
of sequence mutations.
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Perspectives
Work over the last 10 years has shown that enhancer 
redundancy is a common feature of animal genomes, 
with shadow enhancers potentially controlling most 
developmental genes. The primary purpose of this 
redundancy seems to be providing a mechanism to drive 
robust developmental patterning, irrespective of genetic 
and environmental stress. Shadow enhancers can also 
interact in complex ways to drive finely tuned expression 
patterns, similar to the intricate interactions between 
TF- binding sites within an enhancer. Shadow enhanc-
ers may also drive the formation of transcriptional con-
densates or hubs via increased TF recruitment, which 
may increase the fidelity of transcription. Evidence from 
human genetics studies indicates that shadow enhancers 
are key to regulating many disease- associated genes. The 
importance of shadow enhancers is also underscored by 
their surprising evolutionary conservation.

There remain a number of open questions in the 
shadow enhancer field. One of the most persistent 
questions about shadow enhancer prevalence is whether 
multiple enhancers are intrinsically capable of regu-
lation that is unachievable by a single enhancer. Many 
of the ways that shadow enhancers interact (that is, 
synergistically or repressively) are reminiscent of inter-
actions observed between TF- binding sites within a 
single enhancer. So why have more than one enhancer? 
It may be possible that there is a limit on the stretch of 
DNA that can serve as an enhancer, so multiple enhanc-
ers allow there to be more room to encode complex  
biological functions. Or perhaps the formation of sta-
ble transcriptional hubs requires multiple clusters of 
TF-binding sites spread throughout a locus to recruit the  
necessary transcriptional machinery. Alternatively,  
the flexibility of 3D genome organization may allow 
regulatory information to be encoded in either a single 
enhancer or multiple shadow enhancers located within 

the same topologically associating domain. If true, this 
suggests that shadow enhancers exist in the genome 
because there is no selective pressure to consolidate 
them into a single enhancer. A comprehensive answer 
to these questions will require several types of exper-
iments. Measuring the activity of large numbers of 
individual enhancers and shadow enhancer sets may 
identify the behaviours that are possible with multiple 
enhancers, but not a single enhancer. Experiments that 
visualize the dynamic 3D conformation of loci with 
multiple enhancers would improve our ability to pre-
dict how multiple enhancers interact to control a single 
target gene.

Despite the prevalence of shadow enhancers in ani-
mal genomes, their evolutionary origins are largely a 
mystery. Once present in a genome, shadow enhancers 
are typically more conserved than other enhancers16. 
Some shadow enhancers are even among the most 
conserved sequences in the genome (that is, ultracon-
served enhancers)38,118. Since many shadow enhancers 
seem to be dispensable for organismal function and 
display superficial redundancy, their high degree of 
evolutionary conservation is puzzling. Most shadow 
enhancer- knockout studies have been performed in 
laboratory conditions, which do not recapitulate native 
environments. Therefore, it may be hard to observe the 
potentially small reductions in fitness that can result 
in strong purifying selection. Future studies of shadow 
enhancer mutants in more natural environments may 
generate a fuller picture of the contributions of enhancer 
redundancy to organismal fitness.

Finally, our ability to predict the effect of enhancer 
sequence variation on human phenotypes is still lim-
ited. Most trait- and disease- causing variants discovered 
in genome- wide association studies fall outside coding 
sequences and are hypothesized to affect enhancer 
sequences137,138. Similarly, whole- genome sequencing 
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in non- coding regions that generate a novel enhancer, duplication of an existing enhancer, splitting of a large enhancer 
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of patients has identified a growing number of rare 
non- coding variants that affect developmental genes and 
are linked to disease139–142. In contrast to findings from 
genome- wide association studies and whole- genome 
sequencing studies, disease- associated genes with large 
redundant regulatory domains show a relative depletion 
of functional non- coding variants73. How can we syn-
thesize the fact that shadow enhancers can buffer gene 
expression against sequence variation with the preva-
lence of disease- associated enhancer mutations? It is 
possible that disease- causing non- coding variants pri-
marily affect genes lacking shadow enhancers or cause a 

gain of enhancer activity, which may not be buffered by 
the presence of shadow enhancers. Alternatively, vari-
ants in shadow enhancers may have a fairly small effect 
on target gene expression, which can be amplified by the 
presence of other mutations or the environment, leading 
to disease. The rapid increase in whole- genome sequenc-
ing of individuals143–145 combined with large- scale func-
tional assays of human enhancer variant activity127,146 will 
shed more light on the role shadow enhancers play in 
human disease.
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