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Transcriptional enhancers are crucial regulators of gene expression
and animal development1 and the characterization of their genomic
organization, spatiotemporal activities and sequence properties is a
key goal in modern biology2–8. Here we characterize the in vivo activity
of 7,705 Drosophila melanogaster enhancer candidates covering 13.5%
of the non-coding non-repetitive genome throughout embryogen-
esis. 3,557 (46%) candidates are active, suggesting a high density with
50,000 to 100,000 developmental enhancers genome-wide. The vast
majority of enhancers display specific spatial patterns that are highly
dynamic during development. Most appear to regulate their neigh-
bouring genes, suggesting that the cis-regulatory genome is organized
locally into domains, which are supported by chromosomal domains,
insulator binding and genome evolution. However, 12 to 21 per cent
of enhancers appear to skip non-expressed neighbours and regulate
a more distal gene. Finally, we computationally identify cis-regulatory
motifs that are predictive and required for enhancer activity, as we
validate experimentally. This work provides global insights into the
organization of an animal regulatory genome and the make-up of
enhancer sequences and confirms and generalizes principles from
previous studies1,9. All enhancer patterns are annotated manually
with a controlled vocabulary and all results are available through a
web interface (http://enhancers.starklab.org), including the raw images
of all microscopy slides for manual inspection at arbitrary zoom levels.

Animal development depends on differential gene expression gov-
erned by genomic regulatory elements called enhancers1,9, which are being
studied extensively2,3,8,10,11. Many of the basic principles of develop-
mental gene regulation have been elucidated in the fruitfly Drosophila
melanogaster1,12,13, and work over the past decades has characterized
gene expression, transcription factor binding, chromatin features and
enhancer activity in Drosophila at unprecedented levels2,5–8,14–16. This
and the ability to obtain many embryos from all developmental stages17

make Drosophila an ideal model in which to characterize spatiotemporal
enhancer activities at a genomic scale and throughout embryogenesis.

To systematically characterize developmental enhancers in the D.
melanogaster genome, we made use of transgenic fly lines (Vienna Tiles
(VT) library), publicly available from the Vienna Drosophila RNAi Center
(VDRC). Each line contains a transcriptional reporter construct with a
,2 kilobase (kb) genomic DNA fragment (enhancer candidate), mini-
mal promoter and GAL4 reporter gene integrated into an identical posi-
tion in the fly genome16, thus allowing the direct comparison of the
candidates’ activities (Fig. 1a, Extended Data Fig. 1a, b and Supplemen-
tary Table 1). Together, these fragments cover about 14 million base pairs
or 13.5% of the non-coding, non-repetitive genome, with little or no bias
regarding the distance to transcription start sites (TSSs; Extended Data
Fig. 1c) or the embryonic expression of neighbouring genes (Extended
Data Fig. 1d).

We developed a high-throughput pipeline to assess transcriptional
enhancer activities in fly embryos by in situ hybridization against the
GAL4 reporter transcript. For each transgenic line, we acquired whole-slide

images, each with about 400 embryos covering all stages of embryo-
genesis, and manually annotated the enhancer activity patterns using a
controlled vocabulary14 at six time intervals of embryogenesis (Extended
Data Fig. 1e). The pipeline reported activities independent of fragment
delineation and orientation and recovered 27 out of 28 known enhancers,
whereas 13 out of 13 non-Drosophila controls were inactive (Extended
Data Fig. 2a–c and Supplementary Information section 1). Results from
re-testing 34 negative and 78 positive fragments using a different genomic
site (on chromosome 2L instead of 3L) and reporter gene (lexA) were
highly similar and the majority (82%) of enhancer activity patterns
matched to the expression patterns of neighbouring genes, suggesting
that we predominantly measured endogenous enhancer activities (Ex-
tended Data Fig. 2d–f and Supplementary Information section 1).

3,557 of all 7,705 tested candidate fragments (46%) were active in the
embryo with diverse patterns that included gap and pair-rule patterns,
all primary germ layers (Extended Data Figs 3a and 4a), and all major
cell types and tissues (Fig. 1b and Extended Data Figs 3b and 4b). The
fraction of active fragments increased about fivefold from ,7% in early
embryos (stages 4–6) to ,35% for stages 15–16, consistent with the increase
in organism complexity and the number of cell types (Fig. 1c). By con-
trast, the number of expressed genes remains roughly constant during
embryogenesis (,1.3-fold increase18). Enhancer activities were much
sparser than gene expression patterns both temporally and spatially:
while 94% of all enhancers were only transiently active and only 0.8%
were ubiquitous during the entire embryogenesis, this was true for 56.7%
and 20.5% of the genes, respectively (Fig. 1d, e and Extended Data Fig. 5a–c).
The temporal dynamics of enhancer activity was also apparent from
changes of enhancer-associated chromatin features such as DNase I
hypersensitivity (DHS), binding of co-activator CBP/p300, and pres-
ence of histone H3K27 acetylation mark assessed in entire embryos or
in a tissue-specific manner2,19,20 (Fig. 1f–h, Extended Data Fig. 6 and
Supplementary Information section 2). Together, this confirms and
quantifies the transient and dynamic nature of enhancer function and
suggests that development progresses through increasingly complex gene
regulation by enhancers with temporally and spatially restricted activities.

We next identified domains in the blastoderm embryo in which enhanc-
ers appeared co-regulated (that is, were coordinately active or inactive).
Automated image segmentation and reverse clustering revealed distinct
regions corresponding to the presumptive anterior and posterior endo-
derm, head and trunk mesoderm, procephalic neuroectoderm, and others,
overall strongly resembling the established fate map of the blastoderm
embryo17 (Fig. 1i and Extended Data Fig. 4c). This suggests that cells
within these domains have a common developmental fate, presumably
due to shared trans-regulatory environments. Indeed, during late stages,
early mesodermal enhancers were preferentially active in mesoderm deriv-
atives (somatic, visceral and cardiac muscles), whereas early endodermal
enhancers were active in endoderm derivatives (midgut and Malpi-
ghian tubules) (Extended Data Fig. 4d). These and equivalent trends for
other presumptive tissues of the early embryo (Extended Data Fig. 4e–g)
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demonstrate that enhancer activities are consistent with the progres-
sion of development along defined cell lineages, highlighting the gene
regulatory basis of development.

To analyse the locations of enhancers with respect to their putative tar-
get genes, we assigned enhancers to genes by manually matching enhancer
activity and gene expression patterns (Figs 2a and 3a). For the 874 enhanc-
ers with the strongest activity patterns, we considered 3,681 genes within
five genes up- and downstream of each enhancer (including host genes
for intronic enhancers), that is, 9,293 enhancer–gene pairs. For 4,224 of
these pairs (45%; 1,690 genes), expression patterns were available, result-
ing in 482 enhancer-to-gene assignments (of the enhancers for which all
neighbouring genes were characterized, 82% could be assigned; Extended
Data Fig. 2f and Supplementary Table 4). The assignments were sup-
ported by the location of chromosomal domain boundaries21, binding
sites of insulator proteins22 and evolutionary chromosome breakpoints23,
all of which were depleted between enhancers and their assigned targets
(Fig. 2b–d, Extended Data Fig. 7a–c and Supplementary Information
section 3). Twenty-eight enhancers were assigned to and potentially regu-
late two genes, 23 of which were paralogues with very similar expression
patterns (Supplementary Information section 4). During stages 4–6, 16
genes were assigned to enhancers with overlapping or identical activ-
ities reminiscent of shadow enhancers24. This is a considerable fraction

(14%) among all 116 genes with multiple enhancers, in particular for
developmental regulators (14 out of 16 genes are transcription factors;
Supplementary Information section 5).

Along the linear genomic DNA sequence, the distances between the
enhancers and the TSSs of their assigned target genes varied greatly:
although many such pairs were close (21% were ,4 kb), the median
distance was 10 kb, and 28% of all inferred regulatory interactions were
distal (.20 kb), up to more than 100 kb (Fig. 2e). However, consider-
ing the location of genes, the vast majority (88%) of all enhancers were
located in the vicinity of their targets (Fig. 2f). Nevertheless, 12% of all
enhancers were assigned across intervening genes and appeared to skip
one (8%) or more (4%) genes to regulate a distal gene (Fig. 2f), as found
for a Sex combs reduced (Scr) enhancer that lies beyond the fushi tarazu
(ftz) gene25. Interestingly, enhancers were located almost as frequently
upstream (30%) as downstream (22%) of their target genes (for example,
the SoxNeuro (SoxN) locus; Extended Data Fig. 8), suggesting that no
particularly preferred relative enhancer location might exist.

Thirty-six per cent of the enhancers were intragenic and appeared to
predominantly (79%) regulate their host genes, as exemplified by Throm-
bospondin (Tsp; Fig. 3a). However, 21% were assigned to a neighbouring
gene instead (Fig. 3b), including an enhancer located inside the intron
of bric a brac 1 (bab1) that appears to activate bab2 over a distance of
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Figure 1 | Enhancers display highly diverse and dynamic activity patterns
across Drosophila development. a, The VT library comprises transgenic
flies with candidate fragments (blue) upstream of a transcriptional reporter
(middle) in a constant genomic landing site (Extended Data Fig. 1).
b, Proportion of enhancer activities in prominent tissues at stages 13–14
(representative embryos; Extended Data Figs 3 and 4). VNC, ventral nerve cord.
c, The number of active enhancers increases during embryogenesis, with
some overlap between early and late enhancers (Venn diagram in c). d, 3,329
(94%) embryonic enhancers are only transiently active. e, Temporal dynamics
of gene expression (left, 5,134 genes14) and enhancer activity (right, 3,557

enhancers; black vertical lines indicate continuous expression or activity;
Extended Data Fig. 5a). f–h, Heatmaps show the median enrichment of DNA
accessibility20 (f), CBP/p300 binding (g) and H3K27 acetylation (ac) marks2

(h) on early (E), middle (M), late (L) and continuous (C) enhancers (rows)
for experiments performed at different time points during Drosophila
development (columns; red highlights coinciding time points; Extended Data
Fig. 6). i, Co-regulated domains defined by reverse clustering of raw image
data for 429 early enhancers resemble the embryo fate map17 (Extended Data
Fig. 4c). ChIP, chromatin immunoprecipitation; NE, neuroectoderm.
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93 kb (Fig. 3c). bab1 is not detectably expressed in the embryo during
the corresponding developmental stage, which we found to be true
more generally when intragenic enhancers regulated flanking genes rather
than their host genes (Fig. 3d). Similarly, when intergenic enhancers were
assigned to distal genes, the skipped genes were significantly less highly
expressed than the target genes (Fig. 3d). Together these results sup-
port a predominantly local organization of the Drosophila genome into
regulatory domains reminiscent of the chromosomal domains inferred
from chromatin interactions21.

The agreement of most enhancers’ activities with the expression pat-
terns of neighbouring genes (Figs 2f, 3a and Extended Data Figs 2f, 8)
confirms that enhancer activity is predominantly context independent9.
However, 18% of the enhancers could not be assigned to neighbouring
genes (Extended Data Fig. 2f) and might be involved in more distal reg-
ulation (for example, ref. 26). For 19%, the activities were similar but
broader and might thus be modulated in the endogenous sequence con-
texts in a more complex fashion (Supplementary Information section 1).
Such context dependence is known for several loci in Drosophila (for
example, the Hox locus27) and mouse (for example, Fgf8 (ref. 28)), and
enhancers in the bithorax complex indeed matched to gene expression
patterns during early stages but appeared broader later (Extended Data
Fig. 7d).

Many different enhancers showed similar or identical activity patterns
in various embryonic tissues. For example, 263 were active throughout
the central nervous system (CNS), 59 in midgut and 32 in macrophages
(Extended Data Fig. 3), thus probably providing sufficient statistical
power to discern predictive sequence signatures. Indeed, the motif con-
tent alone allowed the discrimination of enhancers from different func-
tional classes using supervised machine learning in a cross-validated
setting29 (Extended Data Fig. 9a, b and Supplementary Table 5). The
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Figure 3 | Intragenic enhancers in the Drosophila genome. a, Enhancers in
the Tsp locus. Top, UCSC Genome Browser screenshot including tested
fragments (purple, positive; grey, negative) and DNA accessibility20. Bottom,
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corresponding stages18. Bottom, embryo images depicting the bab1 and bab2
expression during stages 13–14 (ref. 14) and VT23828’s activity in the
proventriculus (middle). d, Non-regulated host and skipped genes are often not
expressed. Box plots show gene expression (reads per kilobase per million
(RPKM)) values as measured by RNA-seq18 for assigned target genes (blue) and
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fraction of classes for which predictions were successful increased with
the number of enhancers per class (Supplementary Table 5) but appeared
to be independent of pattern complexity. This suggests that our under-
standing of regulatory sequences will benefit from the ongoing func-
tional characterization of enhancers4–7.

Different transcription factor motifs were strongly differentially dis-
tributed between the enhancer classes (Fig. 4a and Extended Data Fig. 9c).
For example, early embryonic enhancers were enriched in motifs of the
transcription factor Zelda, an important activator of embryonic gene
expression30. Similarly, Twist (Twi) motifs were enriched in early meso-
dermal enhancers, Myocyte enhancing factor 2 (Mef2) motifs in late

somatic muscle enhancers, and Pannier (Pnr) and Tinman (Tin) motifs
in dorsal vessel enhancers, consistent with the established roles of the
these transcription factors8 (Fig. 4a and Extended Data Fig. 9c). To test
whether predicted motifs are required for enhancer activity, we selected
three midgut, four CNS and four anterior–posterior (A–P) enhancers
(11 enhancers total), for which the successful predictions depended on
GATA-like, Trithorax (Trl, also known as GAGA)-like, and Tramtrack
(Ttk)-like motifs, respectively (Fig. 4a and Extended Data Fig. 9b, c).
For each, we created reporter flies with an enhancer variant in which we
disrupted the respective motifs by point mutations and compared the
activity of the mutant and wild-type enhancers, both manually and by
computational image analysis (Fig. 4b and Extended Data Fig. 10). In
10 out of 11 cases, the mutated enhancers were not active or had strongly
reduced activity, validating the functional importance of the respective
motifs.

Taken together this work complements efforts that study chromatin
properties2,19,20 or characterize enhancers at defined stages and in selected
tissues5–7,15,16. Our results confirm and generalize principles and models
from smaller scale studies (reviewed in refs 1, 9, 12) and suggest a high
density of developmental enhancers in the Drosophila genome with an
estimated total of ,41,000 enhancers or four enhancers per expressed
protein-coding gene on average during embryogenesis alone. In addi-
tion, considering that enhancers that are exclusively active in larvae,
pupae or the adult fly5–7,15,16 (Supplementary Information section 6), we
estimate between at least 50,000 to 100,000 developmental enhancers in
the 170-megabase D. melanogaster genome. Even though the genome
sequence properties (for example, repeat content and gene density) differ,
this suggests that the 3-gigabase human genome could contain up to
several million enhancers. In summary, the functional characterization
of enhancers during the entire Drosophila embryogenesis adds a new
level of functional annotation to the well-studied fly genome and eluci-
dates global principles of cis-regulatory genome organization in animals,
the importance of which for development, physiology, evolution and
disease is becoming increasingly evident.

METHODS SUMMARY
We assessed enhancer activities of 7,705 genomic fragments of about 2 kb in embryos
of transgenic GAL4-reporter (VT) fly strains obtained from the VDRC (http://stock
center.vdrc.at/) by in situ hybridization. Embryos of each VT strain were manually
annotated with a controlled vocabulary and positive strains were imaged. Motif ana-
lyses and support vector machine (SVM) predictions were performed as described
in ref. 29. All fragment coordinates and annotations are in Supplementary Table 1
and at http://enhancers.starklab.org/.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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